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Summary. A general method for approximate solution of one-dimensional 
Schrrdinger equations with a wide range of square-integrable potentials is 
described. The potential is expanded in terms of either Jacobi or Bessel functions of 
argument exp(-r) .  This allows the Schrrdinger equation to be solved by the 
Frobenius method. In the absence of super-computing power the input require- 
ment of a large number of significant figures was handled by an algebraic comput- 
ing package, for illustrative purposes. A sum of Gaussian wells and a Morse 
potential are treated as examples. 
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1 Introduction 

One-dimensional wave-mechanical problems are of continued importance [1-9]. 
One example is the radial part of spherically symmetrical problems that transforms 
into one-dimensional form by substituting ~,(r) = 1/r'S(r),  where S(r)  satisfies the 
equation: 

S" + 2 # m / h Z [ W  - V(r) - h21(l + 1)/2#~r2]S = 0 

which becomes a standard one-dimensional Schrrdinger equation for orbital 
angular momentum of zero, l = 0. Problems of this type are commonly solved 
variationally, by perturbation techniques, or numerical integration [3]. Other 
methods involve Pade approximations or Hills determinants. The WKB method, 
also known [1] as JWKB, however is still the most popular. 

A new approach of simple design that deals with a wide range of potentials is 
described in this paper. The method, in its present form, allows approximate 
solution of the Schr6dinger equation for all square-integrable potentials V(r)  with 
respect to a certain weight, co(r). The method is perhaps unique in that a single 
operation provides both bound-state and scattering solutions in position, as well as 
momentum representation. The mathematical formulation allows direct use of 
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numerical techniques, which however, involve the addition or substraction of 
extremely large numbers during evaluation of the coefficients. This is a drawback 
until more powerful computers become generally available. In the present illustra- 
tive applications an algebraic package was used to handle the required number of 
significant figures. 

2 Description of the method 

The principles of the procedure are described in terms of Bessel functions, whereas 
the numerical analysis demonstrates the use of Jacobi polynomials. 

The following properties of Bessel functions are used. Let 2k denote the positive 
zeros of J~(z) in ascending order and where v > 0. The follow orthogonality 
condition holds [10]. 

zJ~(2mz)J~(2.z)dz = 1/2JZ+t(2.), n = m 

Substitute r = - 113 z to give: 

e-ZrJ~(2me-r)J~(2"e-r)dr = 1/2J~+l(2,),n = m 

Expanding [11] the potential V(r) as: 

V(r) = ~, akJ~(2ke -~) (1) 
k=l  

the series will converge to V(r) if V(r) is square-integrable [6] with respect to 
weight e -  2~ over [0, oo). 

= 2/J2+ 1 (2k) f o  e - 2'J~()~ke -~) V(r)dr ak 

Substituting from Eq. (1) into the Schr6dinger equation gives: 

} S " + 1 7 . W -  --  akJ~(2ke -r) S = 0  (2) 
k=l  

where H = 2#m/h 2, #m = reduced mass, or mass. 
The Taylor series of Jv is [71: 

/]Tff¥7  b 

= ~ b~co 2/+v 
, :/=0 

Using this result with Eq. (2) and the substitution: 
y = e-r;  y~[0,  1], r~ [0, oo),S(r) = R(y), gives: 

(3) 
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Because there is a regular singularity at zero R expands as a Frobenius series 
around zero [12]: 

The indicial equation for m is: 

R = ~, Cny n+m 
n=O 

m ( m -  1) + m + H W =  0 since v > 0. 

m =  + x /  -- FI W 

By rezeroing the energy Wone  may distinguish between pure scattering and bound 
states as follows: 

m = _+ w/-H-w~ IR for bound states 

m = _ i x / - H w e  c for scattered states 

The special case W = 0, i.e. m = 0 will later be shown to be a scattering solution. 

3 The general solution 

Substitution of the Frobenius series into Eq. (3) gives: 

n=O k= i  1=0 

The recursion formula for the c. 's follows as: 

c . { ( n + m ) Z  + H W } - F l  ~ ~ akbkc._2,_~=O (4) 
k=l  I=0 

Unless this infinite recursion relation can be solved it is necessary to turn it into 
a finite form by choosing a finite rather than an infinite expansion of V(r). The 
number of terms should ideally minimize the error with respect to computing time. 
Equation (4) can be solved either by direct substitution using the formula above or 
by a method of generalized continued fractions due to Milne Thompson [13], e.g.: 

c. = [c . -1"c . -2  . . . .  co]Qp'Qp+l" " " Q M- l { a .b . "  " k.} 

where { } represents a column vector 

where a. = coefficient of c._ 1 

b. = coefficient of c. 2 

k. = coefficient of Cn-M 

Notice that the coefficient of c. must be unity and the Qp are M x M matrices. 
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Q p = a .  1 0 0 - 0 

b. 0 1 0 - 0 

c. 0 0 1 - 0 

k. 0 0 0 - 0 

Where M is the point at which the series are terminated. The general solution to 
Eq. (2) is: 

R= A ~ c.yn+m+ B ~ c'.y "-m (5) 
n=O n=O 

The c. are computed from Eq. (4) or by using generalized continued fractions with 
+ m  the c" are computed from the same formulas but with - m .  

4 Bound states 

For  a regular solution at zero, B = 0 and A is fixed by normalization. Since 
y = e x p ( - r )  the series converge rapidly with increasing r. Also by the theory of 
Frobenius series [14] the solution converges for y < ~ ,  that is, well past the 
boundary condition at y = 1, This boundary condition gives the eigenvalue condi- 
tion as: 

c.(W)= 0 
n = 0  

That  is W is varied until ~ . ~ o  e. equals zero. 

5 Scattering solution 

In this case m = + i ~ ,  we require R(1) = 0, i.e. at r = 0 the wavefunction is 
zero, and the scattering solution is: 

R(y) = A { [ c o s ( v / - H W l n y ) -  i s i n ( ~ l n y ) ]  .=o ~ c'y" 

Sc'. 
(6) 

where A is fixed by normalization. 
The case of W = 0, m = 0, yields, by the theory of Frobenius series: 

R(y) = A c.y" + B lny c.y" + ~m 
/1=0  ?t=O ~1=0 
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Since Co is a constant, independent of m: 

~ ~c, Y" ~ ~c, =oy" .=o~mm=o =.=l~mm 
R(O) = Aco + B{--  ~ + 0}, which is unbounded and has no eigenvalues, and thus 
is a scattering solution. 

6 Momentum wavefunctions 

Both bound-state and scattering solutions are of the form: 

%e_j  r 
j=o  

and the series are uniformly absolutely convergent [15], the Fourier transform is 
easily found to be: 

a s where p is the momentum. 
= o j + ip/h 

The Fourier transform of Eq. (5), with B = 0, is: 

A ~ c,/(n + ~ + ip/h) (7) 
n=O 

The Fourier transform of Eq. (6) is: 

A -- ~c ,  n=o n=o 
(8) 

This means that the coefficients c, of the Frobenius series fully define the 
mechanics of the particle. 

Equations (7) and (8) represent the momentum wavefunctions. 

Examples 

First consider the Morse potential, which has an accurate analytical formula for its 
eigenvalues, which allows the numerical accuracy of this method to be evaluated. It 
must be pointed out that the present method is intrinsically theoretical and not 
numerical, that is the wavefunctions are derived as analytical Taylor series which 
can be used elsewhere in their analytical form [15]. 

Consider: 

V(r) = De -2~'-r°)/r° -- 2De -~'-'°)/r° 

Substitution into the Schr6dinger equation gives: 

S" + 2#m/h2{ W - -  De -2~r-r°)/~° + 2De -~(r-~°)/'°}S = 0 

Now let y = e - x - l ,  x = (r -- ro)/ro, ye[0 ,  1], S(r) = R(y). 

2#,, e ,y  2,] Yhis gives y2 R" + y R'  + ~ T  { W + De'2 [ y " - } R = O  
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Instead of using the Bessel functions of the text, Jacobi polynomials are used 
here because they have a finite Taylor series. Any orthogonal functions which are 
complete and orthogonal over [0, 1] will do, the Jacobi Polynomials are complete 
and orthonormal [10] over [0, 1]. Replacing the functions of the actual variable by 
a good approximation ensures that the results must be close to the true solutions. 

Expansion of De~[2y ~ -  e~y 2~] as a sum of Jacobi's gives: 

De~[2y ~ -- e~y 2~] = De ~ ~ akGk(1 , 1, y) 
k=O 

where the 

x k - i + c ~ + l  k - i + 2 c ~ +  1 

and use has been made of the formula [10]: 

Gk(1, 1, y)=k , / (2k ) !  i=1 ~ ( - l ) i ( k )  ~ - i ~ . ! y k - i  

and the normalization condition F10]: 

Gk(1, 1, y)Gj(1, 1, y)dy = (k!)4/(2 k + 1)[(2k)!31 ' k = j  

Evaluation of the ak'S and some simplification show that De'[2y ~ -  e~y 2~ ] is 
approximated excellently by: 

De'[48/77y + 144/77y 2 - (16/33 + e~)y 33 

for c~ = 1.50, D -- 4.747 eV and 21t,,rZ/h 2 = 132.597 eV -1. These parameters cor- 
respond to the values for the hydrogen molecule. 

We obtain the following recursion formula: 

De ~ 
c, = (21~,,r2o/h 2) (n 2 + 2nm) [ - 48 /77c ,_a  - 144/77c,_2 + (16/33 + e~)c,_3] 

where Co is arbitrarily chosen to be one. 
The eigenvalues are generated from the requirement of Eq. (4). 
Convergence of the above series was obtained for the worst case where W is 

close to zero, within 380 terms. A few lines of computer code were written in 
Mathematica [16], and run on a small personal computer, produced all of the 
correct eigenvalues. The zero's of the function Sc, were isolated by looking for 
a sign change, and then searching the region for the corresponding root. 

Convergence is worst at y = 1 for evaluation of the wavefunction; in the rest of 
configuration space y < 1, and the nth term of the series is multiplied by the rapidly 
decreasing factor of y". Thus for very small values of y, that is for large values of the 
distance r, the series converges fully in only a few terms and excellent asymptotic 
solutions are obtainable for r near infinity. 

Thi s example demonstrates the numerical handling of a well known problem 
with an analytical solution. It gives us confidence in the method, next applied to 
a more difficult problem, i.e. a finite sum of Gaussian minima or maxima. We 
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Table 1 
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# of level 7 term approx/eV 8 term approx/eV 9 term approx/eV NAG/eV 

0 - 2 . 6 2 3  - 2 . 6 2 7  - 2 . 6 2 7  - 2 . 6 2 7  

1 - 1 . 8 5 8  - 1 . 8 5 5  - 1 . 8 5 5  - 1 . 8 5 5  

2 - 1 . 2 0 1  - 1 . 2 0 2  - 1 . 2 0 1  - 1 . 2 0 0  

3 - 0 . 6 4 1  - 0 . 6 4 3  - 0 . 6 4 3  - 0 . 6 4 3  

4 - 0 . 1 8 4  - 0 . 1 8 4  - 0 . 1 8 5  - 0 . 1 8 5  

T h e  l a r g e s t  d i f f e r e n c e  b e t w e e n  t h e  t w o  m e t h o d s  i s  0 . 5 %  

specifically solve the case of two Gaussians for the first five eigenvalues and 
compare  these values to the first five eigenvalues obtained from a Pr/ifer transform, 
shooting technique used by the N A G  subroutine library. The results are contained 
in Table 1. 

Consider: 

N 

V(r) = ~ Aie-a~(r-r')2 
i = 1  

where the ai > 0, i = 1, 2 , . . .  and rl < r2 < . . . .  that  is, V(r) is a sum of Gaussian 
wells or humps or a mixture of the two. 

Substi tut ion of V(r) into the radial Schr6dinger equat ion with l = 0 gives: 

Substitute y = e -a~r, S(r)  = R(y). 

T h i s g i v e s y 2 R " + Y R ' + I I {  W -  ~Aiy-a~lny/a~-2r'aUami=l afrO)} R = 0 '  

2#m 
where H = h 2 

N o w  y - -  a 2 1 n y / a 2  - 2ria~/aJ is bounded  on [0, 1]. So it may  be expanded in terms of 
Jacobi  polynomials  G(1, 1, y). 

y - ,~lny/,~ - 2r~a~/~,j = ~ akGk(1, 1, y) 
k = 0  

where 

ak = ((2k)!)2 (2k + 1)/(k !)4 f~  Gk(1, 1, y)y - a~ny/a~ - 2r~a~/a~ dy 

(2k - i)! f2  _a~lny/ay_ 2,.aU,~+k_idy 
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N o w  

f ~  y -- a~lny/a~ -- 2r, a~/aj + k - I-a~(i  1 k 2 a ~ r i / a j ) 2 / 4 a  2] i dy  Exp + 

x I-1 - E f t [ -  ai ( i  - k - 1 

+ 2agr i /a j ) / 2a j - ]  "1 x ( x / ~ a J 2 a i )  

Hence: 

ak = (2k) l (2k + 1)/(k!) a ( - 1 )  ~ ~ _- ~!  
i=O 

x Exp [ a ] ( i -  1 - k + 2 a ~ r j a ~ ) E / 4 a ~ ]  

x I-1 -- E f t [ -  a)( i  - k - 1 + 2 a ~ r , / a j ) / 2 a ) ] ]  x ( V / - ~ a / 2 a i )  

The Jacobi  expansion is terminated when an acceptable approximat ion  is 
obtained. F r o m  the results of  the last section the coefficients c, may  be obtained to 
yield solutions accoring to Eqs. (5) and (6) or  m o m e n t u m  space solutions according 
to Eqs. (7) and (8). 

To give a specific demonst ra t ion  of the method  a particular case of  the previ- 
ous problem is solved. Let N = 2, A1 = - 5  eV, A2 = 2eV,  rl = 0, r2 = .5 A, 
al  = a2 = 1 , ~ - 1 ,  aj = 1 , ~ - 1 ,  #,, = .5x  10 -27kg .  H = 144.052eV -1 

This potential  corresponds to an attractive well of  depth - 3.4424 eV at the 
origin and a small max imum of height 0.212 eV further out  at 1.554 A. 

Three approximat ions  were used; given by the first seven, eight and nine terms 
of the Jacobi  expansion. Er ror  curves showing the difference between the real curve 
and the approximat ion  are shown in Fig. 1. As expected the higher order  approx-  
imations show better results. 

After some manipula t ion and from Eq. (4) this yields the following recursions, 
defining the Cn. 

The seven term expansion yields: 

c , ( n  2 + 2rim) - H I - ( -  0.179720567 x 5 - 1.952623062 x 2 x e - ° ' 25 )c ,_  1. 

+ (5.630630955 x 5 + 23.92535782 x 2 x e - ° ' 25 )c ,_2  

+ ( -  57.13154941 x 5 - 9.149903944 x 2 x e - ° ' 25 )c ,_3  

+ (153.1547901 x 5 - 141.9916296 x 2 x e-° '25)c~_4 

+ ( -  191.8262691 x 5 + 304.9877645 x 2 x e - ° '25)c ,_5  

+ (118.7541858 x 5 - 248.2222894 x 2 x e-°'25)cn_6 

+ ( -  29.40504996 x 5 + 73.38666123 x 2 x e-°'25)Cn_ 7 

where m = ~ / H ( -  W + 0.050366). 
While the eight term expansion yields: 

c , ( n  2 + 2rim - FIE( - 0.53324441045 x 2 x e-0.25 _ 0.303443744 x 5)c , -  1. 

+ ( -  0.91376862423 x 2 x e -° '25 + 7.795786515 × 5)c , -2  

+ (173.00369005396 x 2 x e -0.25 _ 73.0093568260 x 5)c,_ 3 
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Approx - x -I°gx Approx - X-ll°g x 
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0.0015 
0.001 

0.0005 

-0.0005 
-0.001 

0 0  

0.01 

-0.01 
/ (L~(L4 "0.6J 0.8 ~]1 

0.001 

0.0005 

-0.0005 

-0.001 

Seven Term Approximation 

~ i  ~ 0.0075 
0.005 

0.0025 
4" o~'-- --/0.8 

-0.0025 
-0.005 

-0.0075 

Eight Term Approximation 

0.0005 

-0.0005 

-0.001 

~ . 4 ~  ~ ~ 0.002 
o ",o.~6~ o.ool 

-0.001 

Fig. 1. 

Nine Term Approximation 

+ ( -  825 .06760708811  × 2 x e - ° ' z s  + 212 .696567988  x 5 ) c . - 4  

+ ( 1 7 2 5 . 7 8 5 7 9 7 8 3 4 0  x 2 × e-°"25 _ 315.673 x 5 ) c . - 5  

+ ( -  1905 .8199949207  × 2 x e -0.25 + 263 .242  x 5 ) c . _ 6  

+ ( 1 0 8 8 . 2 4 2 3 9 9 3 0 1 0  x 2 x e -0.25 _ 117.867 x 5 )c ._7  

+ ( -  2 5 3 . 7 1 3 9 3 4 5 0 2 0 9  x 2 x e-°"25 + 22 .1155 × 5 ) c . _ 8  = 0 

where  m = x / H ( - -  W + .02825).  
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The nine term expansion gives: 

Cn(n 2 + 2rim) - / / [ ( -  0.229808049 × 5 + 0.392537998 × 2e-°'25)cn_l 

+ (6.175801363 x 5 - 21.28098166 x 2 × e-° '25)c ,_2 

+ ( -  57.88949543 x 5 + 363.0976784 x 2 × e-° '25)c ,_3 

+ (138.9872436 x 5 - 1751.7758 × 2 × e-° '25)c ,_4 

+ ( -  109.2870584 × 5 + 4320.568738 × 2 × e-° '25)c,_5 

+ ( -  80.73461364 × 5 - 6230.458229 × 2 x e-°'25)Cn_6 
+ (219.0897915 x 5 + 5324.62271 × 2 x e-° '25)c ,_7 

+ ( -  156.8928416 x 5 + 2504.290974 × 2 x e-° '25)c ,_8 

+ (39.77963529 × 5 + 500.128231 x 2 x e-° '25)c ,  9 

where m = x / H ( -  W +  0.008139). 
The eigenvalue condition is given by equation (4). 
These are complex transcendental equations, whose solution it is impossible to 

take in at a glance, so further discussion is required. Consideration of the three 
recursions shows that convergence of the c, terms is of the form: 

(max {Abs [coefficients multiplying c,_ 1, " " " c ._  7, 8, 9] } )n/(n !) 2 

In the actual example the constants multiplying c,_ 5, c , -6  and e , -7  of the 
seven, eight and nine term recursions are the largest. They are 1.7 x 104, 6.2 x l0 s, 
104 resp. 

Thus convergence is of the form 

(1.7 x 104) n (6.2 × 105) n 104n 

( n ! ) 2  ' ( n ! ) 2  ' ( n ! )  2 

for the seven, eight and nine term recursions, respectively. 
This may seem to be very fast but a few substitutions of n will show that the 

values of c, rise quickly before falling off to zero as the factorial dominates. Since 
the c, rise quickly, S,c, will also rise quickly before converging. Thus, to evaluate 
the function Sc, one needs to add and subtract large numbers of similar size and the 
loss of significant figures becomes very marked. In the present instance, the 
sum reached a peak of 10 T M  for the seven and eight term approximations before 
decreasing to around 10 -5 as the final converged answer. For the nine term 
approximation the sum peaked at 1034o before decreasing again to around 105 . 
Because the sum peaked at about 10121 and 1034o c, needed to be evaluated at more 
than 121 digits or 340 digits of precision, to arrive at an accurate answer for the 
summation. This is interesting because in all cases the recursion itself only required 
30 digits of precision to solve. This clearly demonstrates the trade off between 
accuracy and computing time that is involved. Because of the high precision 
requirements a program was written within the framework of Mathematica [16], 
which allows calculations to be run to any precision. Since the constants in the 
recursions and H are not to 130 digits or 350, they were treated as exact rational 
numbers, using Mathematica to evaluate e-1/4 to 130 or 350 digits of precision. 
From this point on the program uses 130 or 350 digits for all calculations. A small 
program was written and the series summed to 1500, 2240, 4500 terms for the seven, 
eight and nine term approximations respectively, where the final coefficient added 
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was of the order of 10 16 or less. The zeros of the function Sc,, were isolated by 
looking for a sign change, and the searching the region for the corresponding root. 
The results obtained are presented in Table 1 together with the results obtained via 
numerical integration using a N A G  routine for comparison. Exponential increase in 
computer usage as the approximation is raised for a small increase in the accuracy of 
the final answer (see Table 1) highlights the interplay of achieving the best approx- 
imation while minimizing computer usage. 

It  needs to be stressed that the numerical examples serve to show that the method 
works numerically. They are in no way an indication of how the authors see the 
method implemented practically. The best practical implementation for ground-state 
problems would be to apply the method as follows: 

Because the series equation (5) converges extremely quickly for y close to zero, 
that is when r approaches infinity, good asymptotic solutions are obtained near 
infinity. These asymptotic solutions can be used to obtain the eigenvalues with the 
use of a Pr/ifer transform shooting technique (such as the N A G  algorithm). Once 
the eigenvalues have been obtained calculation of the wavefunction is more trans- 
parent than the evaluation of the eigenvalues because now the series {c,x "+"} 
0 < x < 1 contains the factor x "+m which acts as a convergence factor, especially 
when m is large. Several scaling procedures were tried out in an effort to reduce the 
number of significant figures of input. However, to maintain the same accuracy, this 
requires more terms of the series to sum and the available hardware was not 
sufficiently powerful for this. This does not preclude the use of appropriate conver- 
gence acceleration techniques in future applications. It was, for the same reason, not 
possible to obtain a scattering solution, which requires computation with complex 
numbers. 

It needs to be stated that because Zc,, is a uniformly absolutely convergent series 
1-14] it can be used to obtain all the energy eigenvalues including those positive ones 
to the left of the potential barrier. This is important, because the system is bound on 
only one side and is capable of tunneling through the barrier. This is difficult to 
handle by standard numerical techniques, since the boundary condition at infinity 
cannot be replaced by an arbitrarily large finite number, and asymptotic solutions to 
the equation near infinity are needed. It is not always possible to obtain these 
solutions to the required accuracy. In the method proposed here the boundary 
conditions are finite and the evaluation of all eigenvalues becomes a systematic 
search through the energy range of interest. 

It is noted that zero corresponds to infinity of the original distance configuration 
space, and the series converges faster and faster as y ~ 0 or as r ~ oe. Excellent 
asymptotic solutions obtainable near infinity can be used to overcome the problems 
mentioned in the previous paragraph. 
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